8. Properties of Curves

i. Frenet Frames (Optional)

1. Frenet Frames & Derivatives of TNB

\(\hat{T}\), \(\hat{N}\) and \(\hat{B}\) make up what is called the Frenet Frame. This is a right handed set of \(3\) mutually orthogonal unit vectors that moves along the curve, as opposed to the \(\hat{\imath},\hat{\jmath},\hat{k}\) unit vectors which make up the fixed standard reference frame for \(\mathbb{R}^3\).

Algebraic Properties

The Frenet Frame can be used much like the standard frame. As a right handed set of \(3\) orthogonal unit vectors, \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\) satisfy: \[\begin{aligned} \hat{T}\cdot\hat{T}&=1 \qquad &\hat{N}\cdot\hat{N}&=1 \qquad &\hat{B}\cdot\hat{B}&=1 \\ \hat{T}\cdot\hat{N}&=0 \qquad &\hat{N}\cdot\hat{B}&=0 \qquad &\hat{B}\cdot\hat{T}&=0 \qquad (*) \\ \hat{T}\times\hat{N}&=\hat{B} \qquad &\hat{N}\times\hat{B}&=\hat{T} \qquad &\hat{B}\times\hat{T}&=\hat{N} \end{aligned}\]

Suppose \(\vec u=u_T\hat T + u_N\hat N + u_B\hat B\) and \(\vec v=v_T\hat T + v_N\hat N + v_B\hat B\).
Use the distributive rule, the commutative rule and conditions (*) to compute \(\vec u\cdot\vec v\). What do you notice?

\(\displaystyle \vec u\cdot\vec v =u_Tv_T + u_Nv_N + u_Bv_B\)
As with using components relative to the standard basis, the dot product is the sum of the pairwise products of the components relative to the Frenet basis.

Using the distributive rule: \[\begin{aligned} \vec u\cdot\vec v &=(u_T\hat T + u_N\hat N + u_B\hat B)\cdot(u_T\hat T + u_N\hat N + u_B\hat B) \\ &= u_Tv_T\hat T\cdot\hat T + u_Tv_N\hat T\cdot\hat N + u_Tv_B\hat T\cdot\hat B \\ &\quad + u_Nv_T\hat N\cdot\hat T + u_Nv_N\hat N\cdot\hat N + u_Nv_B\hat N\cdot\hat B \\ &\quad + u_Bv_T\hat B\cdot\hat T + u_Bv_N\hat B\cdot\hat N + u_Bv_B\hat B\cdot\hat B \\ \end{aligned}\] Then using (*) and the commutative rule: \[\begin{aligned} \vec u\cdot\vec v &= u_Tv_T(1) + u_Tv_N(0) + u_Tv_B(0) \\ &\quad + u_Nv_T(0) + u_Nv_N(1) + u_Nv_B(0) \\ &\quad + u_Bv_T(0) + u_Bv_N(0) + u_Bv_B(1) \\ &=u_Tv_T + u_Nv_N + u_Bv_B \\ \end{aligned}\] As with using components relative to the standard basis, the dot product is the sum of the pairwise products of the components relative to the Frenet basis.

Suppose \(\vec u=u_T\hat T + u_N\hat N + u_B\hat B\) and \(\vec v=v_T\hat T + v_N\hat N + v_B\hat B\).

  1. Use the distributive rule, the anti-commutative rule and conditions (*) to compute \(\vec u\times\vec v\).

    \( \vec u\times\vec v =(u_Nv_B-u_Bv_N)\hat T-(u_Tv_B-u_Bv_T)\hat N+(u_Tv_N-u_Nv_T)\hat B \)

    Using the distributive rule: \[\begin{aligned} \vec u\times\vec v &=(u_T\hat T + u_N\hat N + u_B\hat B)\times(u_T\hat T + u_N\hat N + u_B\hat B) \\ &= u_Tv_T\hat T\times\hat T + u_Tv_N\hat T\times\hat N + u_Tv_B\hat T\times\hat B \\ &\quad + u_Nv_T\hat N\times\hat T + u_Nv_N\hat N\times\hat N + u_Nv_B\hat N\times\hat B \\ &\quad + u_Bv_T\hat B\times\hat T + u_Bv_N\hat B\times\hat N + u_Bv_B\hat B\times\hat B \\ \end{aligned}\] Then using (*) and the anti-commutative rule: \[\begin{aligned} \vec u\times\vec v &= u_Tv_T(\vec 0) + u_Tv_N(\vec B) + u_Tv_B(-\vec N) \\ &\quad + u_Nv_T(-\vec B) + u_Nv_N(\vec 0) + u_Nv_B(\vec T) \\ &\quad + u_Bv_T(\vec N) + u_Bv_N(-\vec T) + u_Bv_B(\vec 0) \\ &=(u_Nv_B-u_Bv_N)\hat T-(u_Tv_B-u_Bv_T)\hat N+(u_Tv_N-u_Nv_T)\hat B \end{aligned}\]

  2. Compute \(\begin{aligned} \begin{vmatrix} \hat T & \hat N & \hat B \\ u_T & u_N & u_B \\ v_T & v_N & v_B \end{vmatrix} \end{aligned}\) by expanding on the first row. What do you notice?

    \(\begin{aligned} \begin{vmatrix} \hat T & \hat N & \hat B \\ u_T & u_N & u_B \\ v_T & v_N & v_B \end{vmatrix} &=(u_Nv_B-u_Bv_N)\hat T-(u_Tv_B-u_Bv_T)\hat N+(u_Tv_N-u_Nv_T)\hat B \\ \end{aligned}\)
    We notice, this is the same as \(\vec u\times\vec v\).

    \[\begin{aligned} \begin{vmatrix} \hat T & \hat N & \hat B \\ u_T & u_N & u_B \\ v_T & v_N & v_B \end{vmatrix} &=\hat T \begin{vmatrix} u_N & u_B \\ v_N & v_B \end{vmatrix} -\hat N \begin{vmatrix} u_T & u_B \\ v_T & v_B \end{vmatrix} +\hat B \begin{vmatrix} u_T & u_N \\ v_T & v_N \end{vmatrix} \\ &=(u_Nv_B-u_Bv_N)\hat T-(u_Tv_B-u_Bv_T)\hat N+(u_Tv_N-u_Nv_T)\hat B \\ \end{aligned}\] We notice, this is the same as \(\vec u\times\vec v\).

These two exercises show that the dot and cross products can be computed using components relative to \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\) in exactly the same way as they are computed using components relative to \(\hat\imath\), \(\hat\jmath\) and \(\hat k\).

Differential Properties

We now turn to the derivative properties of Frenet frames. First notice that a vector field, \(\vec F(t)\), along a curve, \(\vec r(t)\), can be expanded in either the \(\hat\imath\hat\jmath\hat k\)-basis or the \(\hat{T}\hat{N}\hat{B}\)-basis: \[\begin{aligned} \vec F&=F_1\hat\imath + F_2\hat\jmath + F_3\hat k \\ &=F_T\hat T + F_N\hat N + F_B\hat B \end{aligned}\] We want to differentiate \(\vec F\). In the \(\hat\imath\hat\jmath\hat k\) form, since \(\hat\imath\), \(\hat\jmath\) and \(\hat k\) are constant, we only need to differentiate the coefficients: \[ \dfrac{d\vec F}{dt} =\dfrac{dF_1}{dt}\hat\imath + \dfrac{dF_2}{dt}\hat\jmath + \dfrac{dF_3}{dt}\hat k \] However, in the \(\hat{T}\hat{N}\hat{B}\) form, \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\) are not constant, and so we also need to differentiate them. By the Product Rule: \[\begin{aligned} \dfrac{d\vec F}{dt} &=\dfrac{dF_T}{dt}\hat T + F_T\dfrac{d\hat T}{dt} \\ &\quad+ \dfrac{dF_N}{dt}\hat N + F_N\dfrac{d\hat N}{dt} \\ &\quad\qquad+ \dfrac{dF_B}{dt}\hat B + F_B\dfrac{d\hat B}{dt} \end{aligned}\] The Frenet formulas tell us the derivatives of \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\) (with respect to arclength, \(s\)) written as linear combinations of \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\). The coefficients turn out to be the curvature, \(\kappa\), and the torsion, \(\tau\). The derivatives with respect to time, \(t\), are given as a corollary.

The derivatives of \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\) satisfy: \[\begin{aligned} \dfrac{d\hat{T}}{ds}&=\qquad \quad \kappa \hat{N} \\ \dfrac{d\hat{N}}{ds}&=-\,\kappa \hat{T} \quad + \quad \tau \hat{B} \\ \dfrac{d\hat{B}}{ds}&=\qquad -\,\tau \hat{N} \end{aligned}\]

First, note that each of the derivatives can be written as a linear combination of \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\): \[\begin{aligned} \dfrac{d\hat{T}}{ds}&=a\hat{T}+b\hat{N}+c\hat{B} \\ \dfrac{d\hat{N}}{ds}&=d\hat{T}+e\hat{N}+f\hat{B} \\ \dfrac{d\hat{B}}{ds}&=g\hat{T}+h\hat{N}+i\hat{B} \end{aligned}\] for some coefficients \(a\) through \(i\) which we would like to determine. Since \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\) are mutually perpendicular unit vectors, the coefficients can be found from: \[ \begin{array}{ccc} a=\hat{T}\cdot\dfrac{d\hat{T}}{ds}& b=\hat{N}\cdot\dfrac{d\hat{T}}{ds}& c=\hat{B}\cdot\dfrac{d\hat{T}}{ds} \\ d=\hat{T}\cdot\dfrac{d\hat{N}}{ds}& e=\hat{N}\cdot\dfrac{d\hat{N}}{ds}& f=\hat{B}\cdot\dfrac{d\hat{N}}{ds} \\ g=\hat{T}\cdot\dfrac{d\hat{B}}{ds}& h=\hat{N}\cdot\dfrac{d\hat{B}}{ds}& i=\hat{B}\cdot\dfrac{d\hat{B}}{ds} \end{array} \] To find the diagonal coefficients, suppose \(\hat{u}\) is a unit vector. Then \(\hat{u}\cdot\hat{u}=1\) and consequently: \[ 0=\dfrac{d}{ds}(\hat{u}\cdot\hat{u}) =\dfrac{d\hat{u}}{ds}\cdot\hat{u}+\hat{u}\cdot\dfrac{d\hat{u}}{ds} =2\hat{u}\cdot\dfrac{d\hat{u}}{ds} \] Applying this with \(\hat{u}=\hat{T}\), \(\hat{N}\) and \(\hat{B}\) gives \(a=e=i=0\). Next suppose \(\hat{u}\) and \(\hat{v}\) are perpendicular. Then \(\hat{u}\cdot\hat{v}=0\) and consequently: \[ 0=\dfrac{d}{ds}(\hat{u}\cdot\hat{v}) =\dfrac{d\hat{u}}{ds}\cdot\hat{v}+\hat{u}\cdot\dfrac{d\hat{v}}{ds} \quad \text{or} \quad \hat{u}\cdot\dfrac{d\hat{v}}{ds} =-\,\dfrac{d\hat{u}}{ds}\cdot\hat{v} \] Applying this with \(\hat{u}\) and \(\hat{v}\) being two of \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\) gives \(b=-d\) and \(c=-g\) and \(f=-h\). This reduces the system of equations to: \[\begin{aligned} \dfrac{d\hat{T}}{ds}&=\,\qquad\; \quad b \hat{N} + c \hat{B} \qquad\text{(1)} \\ \dfrac{d\hat{N}}{ds}&=-\,b \hat{T} \quad\; + \quad\; f \hat{B} \qquad\text{(2)} \\ \dfrac{d\hat{B}}{ds}&=-\,c \hat{T} - f \hat{N} \qquad\qquad\;\,\text{(3)} \end{aligned}\] Next, we recall the definition of the curvature and one of the formulas for \(\hat{N}\): \[ \kappa=\left|\dfrac{d\hat{T}}{ds}\right| \qquad \hat{N}=\dfrac{\dfrac{d\hat{T}}{ds}}{\left|\dfrac{d\hat{T}}{ds}\right|} \] Consequently: \[ \dfrac{d\hat{T}}{ds}=\kappa\hat{N} \] Comparing this to equation (1), we find \(b=\kappa\) and \(c=0\). Finally, from the definition of the torsion, we have: \[ \tau=-\,\dfrac{d\hat{B}}{ds}\cdot\hat{N} =-(-f\hat{N})\cdot\hat{N}=f \] Thus \(f=\tau\). Putting the values of \(b=\kappa\), \(c=0\) and \(f=\tau\) into (1), (2) and (3) gives the final formulas as: \[\begin{aligned} \dfrac{d\hat{T}}{ds}&=\qquad \quad \kappa \hat{N} \\ \dfrac{d\hat{N}}{ds}&=-\,\kappa \hat{T} \quad + \quad \tau \hat{B} \\ \dfrac{d\hat{B}}{ds}&=\qquad -\,\tau \hat{N} \end{aligned}\]

Since \(\dfrac{d}{dt}=\dfrac{ds}{dt}\dfrac{d}{ds}=|\vec v|\dfrac{d}{ds}\) we conclude:

The derivatives of \(\hat{T}\), \(\hat{N}\) and \(\hat{B}\) satisfy: \[\begin{aligned} \dfrac{d\hat{T}}{dt}&=\qquad \quad |\vec v|\kappa \hat{N} \\ \dfrac{d\hat{N}}{dt}&=-\,|\vec v|\kappa \hat{T} \quad + \quad |\vec v|\tau \hat{B} \\ \dfrac{d\hat{B}}{dt}&=\qquad -\,|\vec v|\tau \hat{N} \end{aligned}\]

Given \(\vec F = 2t\hat{T} + (1+2t^2) \hat{N} - 4t^3 \hat{B}\), find \( \dfrac{d \vec F}{dt} \) on the twisted cubic \(\vec{r}=\left\langle t,t^2,\dfrac{2}{3}t^{3}\right\rangle\).

First, we differentiate with respect to \(t\) using the Product Rule: \[\begin{aligned} \dfrac{ d \vec F}{dt} = 2\hat{T} + 2t \dfrac{d \hat{T}}{dt} + 4t \hat{N} + (1+2t^2) \dfrac{d \hat{N}}{dt} - 12t^2 \hat{B}\ - 4t^3 \dfrac{d \hat{B}}{dt} \end{aligned}\] Recall that for this twisted cubic \[\begin{aligned} |\vec{v}| &= 1+2t^2 \\ \kappa &= \dfrac{2}{(1+2t^2)^2}\\ \tau &= \dfrac{2}{(1+2t^2)^2} \end{aligned}\] So from the Frenet Formulas: \[\begin{aligned} \dfrac{d\hat{T}}{dt}&= \dfrac{2}{1+2t^2} \hat{N} \\ \dfrac{d\hat{N}}{dt}&= -\dfrac{2}{1+2t^2} \hat{T} + \dfrac{2}{1+2t^2} \hat{B} \\ \dfrac{d\hat{B}}{dt}&= -\dfrac{2}{1+2t^2} \hat{N} \end{aligned}\] We substitute these values into our derivative: \[\begin{aligned} \dfrac{d\vec F}{dt} &= 2\hat{T} + 2t \dfrac{2}{1+2t^2} \hat{N} + 4t \hat{N} \\ &\quad+(1+2t^2) \left(-\,\dfrac{2}{1+2t^2} \hat{T} + \dfrac{2}{1+2t^2} \hat{B}\right) \\ &\quad-12t^2 \hat{B} - 4t^3 \left(-\,\dfrac{2}{1+2t^2} \hat{N}\right) \\ &= 2\hat{T} + \dfrac{4t}{1+2t^2} \hat{N} + 4t \hat{N} -2 \hat{T} + 2 \hat{B} - 12t^2 \hat{B}\ + \dfrac{8t^3}{1+2t^2} \hat{N} \\ &= \left(\dfrac{4t + 8t^3}{1+2t^2} + 4t\right) \hat{N}+ (2 - 12t^2) \hat{B} \\ &= 8t\hat{N} + (2 - 12t^2) \hat{B} \end{aligned}\]

Find \( \dfrac{d \vec F}{d\theta} \) given that \(\vec F = x \hat{T} + y\hat{N} + x\hat{B}\) along the helix \(\vec{r}(\theta)=\langle 4\cos\theta,4\sin\theta,3\theta\rangle\).

\( \dfrac{d \vec F}{d\theta} = - \dfrac{36}{5} \sin \theta \hat{T} + \dfrac{69}{20} \cos \theta \hat{N} - \dfrac{1}{4} \sin \theta \hat{B}\)

First, we differentiate with respect to \(\theta\) and apply the Product Rule \[\begin{aligned} \vec F &= 4\cos\theta\hat{T}+4\sin\theta\hat{N}+4\cos\theta\hat{B} \\ \dfrac{d\vec F}{d\theta} &=-4 \sin \theta \hat{T} + 4 \cos \theta \dfrac{d \hat{T}}{d\theta} + 4 \cos \theta \hat{N} + 4 \sin \theta \dfrac{d \hat{N}}{d\theta} \\ &\quad- 4 \sin \theta \hat{B}\ + 4 \cos \theta \dfrac{d \hat{B}}{d\theta} \end{aligned}\] Recall that for the helix: \[\begin{aligned} |\vec{v}| &= 5 \\ \kappa &= \dfrac{4}{25} \\ \tau &= \dfrac{3}{16} \end{aligned}\] So the Frenet Formulas say: \[\begin{aligned} \dfrac{d\hat{T}}{d\theta}&= \dfrac{4}{5} \hat{N} \\ \dfrac{d\hat{N}}{d\theta}&= -\,\dfrac{4}{5} \hat{T} + \dfrac{15}{16} \hat{B} \\ \dfrac{d\hat{B}}{d\theta}&= -\,\dfrac{15}{16} \hat{N} \end{aligned}\] We substitute this in: \[\begin{aligned} \dfrac{ d \vec F}{d\theta} &=-4 \sin \theta \hat{T} + 4 \cos \theta \dfrac{4}{5} \hat{N} + 4 \cos \theta \hat{N} \\ &\quad + 4 \sin \theta \left(-\,\dfrac{4}{5} \hat{T} + \dfrac{15}{16} \hat{B}\right) - 4 \sin \theta \hat{B}\ - 4 \cos \theta \dfrac{15}{16} \hat{N} \\ &=\left(-4 - \dfrac{16}{5}\right) \sin \theta \hat{T} + \left(\dfrac{16}{5}+4-\dfrac{15}{4}\right) \cos \theta \hat{N} \\ &\quad+ \left(\dfrac{15}{4}-4\right) \sin \theta \hat{B} \\ &=- \dfrac{36}{5} \sin \theta \hat{T} + \dfrac{69}{20} \cos \theta \hat{N} - \dfrac{1}{4} \sin \theta \hat{B} \end{aligned}\]

© MYMathApps

Supported in part by NSF Grant #1123255